ELEC50001 EE2 Circuits and Systems

Problem Sheet 4

(Counters and Shift Registers - Lecture 7)
(Question ratings: $\mathrm{A}=$ Easy, $\ldots, \mathrm{E}=\mathrm{Hard}$. All students should do questions rated A, B or C as a minimum)
1B. Q2:0 is the output of a 3-bit binary counter whose input is a constant frequency squarewave, CLOCK. Give a Boolean expression for Z in terms of $\mathrm{Q} 2: 0$ such that Z is high whenever Q2:0 has the value 6 . Draw a timing diagram showing the waveforms of CLOCK and Z and the value of $\mathrm{Q} 2: 0$ during each clock cycle. Indicate on your diagram where glitches might occur in Z .

2C. The diagram shows two phase-detector circuits. Inputs A and B are symmetrical squarewaves with the same frequency but differing phases. Complete the timing diagram by showing the waveforms of X and Y for the case when B lags A by 45°. If logical 0 and 1 correspond to 0 V and 5 V respectively, sketch graphs showing how the DC components (i.e. average values) of X and Y vary with the phase difference.

3B. The signal X forms the input to a shift register that is clocked by CLOCK \uparrow. As shown in the timing diagram, the signal Z gives one pulse when X goes high and two pulses when it returns low. If the successive outputs from the shift register are $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots$ derive a Boolean expression for Z .

4B. Complete the timing diagram by drawing the waveform of P and Q . Explain why only one of these signals is certain to be glitch-free. If the GO pulse occurs at a random time with respect to the CLOCK, determine the average time delay in CLOCK periods between the GO \uparrow edge and the $\mathrm{Q} \uparrow$ edge. Implement this circuit in Verilog.

5C. The diagram shows an AND gate, a 4-bit register and an adder connected together to form a counter. List the values taken by the P input of the adder for all possible values of Q3:0. Draw a state diagram showing the sequence of values taken by $\mathrm{Q} 3: 0$ on successive CLOCK pulses.

6C. Modify the above circuit so that it follows the count sequence $1,2,3, \ldots, 9,10,1,2,3, \ldots$ Draw a state diagram for your revised circuit. Implement this circuit in Verilog.

7B. In lecture 5 slide 17, a 4-bit linear feedback shift register (LFSR) is implemented with the primitive polynomial $1+\mathrm{X}^{3}+\mathrm{X}^{4}$. An alternative primitive polynomial that also gives a maximal cycle length of 15 with a 4-bit LFSR is: $1+\mathrm{X}+\mathrm{X}^{4}$ as shown in the notes for that slide. Derive the sequence resulted in this alternative polynomial. Implement this in Verilog.

8B. Design a maximal length 7-bit LFSR in Verilog.
9C. The DE10-Lite board has a 50MHz system clock available. Design a clock divider circuit that produces a 20 ns pulse every 1 microsecond in schematic form and in Verilog form.

